GERB thermal flux regional bias: detection and correction by comparison with CERES

S. Dewitte
Royal Meteorological Institute of Belgium

Overview

- v Methodology
- υ Used data
- v Comparison results
- υ Bias correction
- v Conclusions

Methodology

- \mathbf{v} Radiative flux at the top of the atmosphere: \mathbf{F} (W/m²)
- v Satellite observations: radiances L (W/m²sr)
- v Satellite viewing zenith angle θ_{vz}

$$F = \pi L (\theta_{vz}) / R(\theta_{vz})$$

- \mathbf{v} GERB: fixed θ_{vz}
- Validation GERB fluxes: comparison with CERES fluxes with variable θ_{vz}

Used data

- v GERB: ARG fluxes, SEVIRI as imager, Version 2
- v CERES FM3: RAPS or GERB mode or special scan, ES8, use of inflight calibration
- υ 1-6/2004
- v use of night data for thermal fluxes
- CERES data is colocated to nearest GERB ARG pixel

95% confidence intervals

- v Radiance GERB/(CERES ES8 FM3) = 0.988 +/- 0.002
- v Flux GERB/(CERES ES8 FM3) = 0.983 +/- 0.002
- v (CERES SSF)/(CERES ES8) = 0.992
- \neg GERB/(CERES SSF FM3) = 0.991 +/- 0.002

Regional distribution

GERB – CERES difference fit

υ Impose linear variation with θ_{vz} : $f(\theta_{vz})=(52.5^{\circ}-\theta_{vz})/52.5^{\circ}$

v Fit difference as function of GERB flux:

$$F_{gerb}$$
- F_{ceres} = $a(F_{gerb})$. $f(\theta_{vz})+b(F_{gerb})$

$$a(F_{gerb}) = GERB$$
 nadir error

 \mathbf{v} Corrected GERB flux = \mathbf{F}_{gerb} - $\mathbf{a}(\mathbf{F}_{gerb})$. $\mathbf{f}(\theta_{vz})$

GERB - CERES FM3 thermal flux

Expected theoretical error

All scenes

Before correction

After correction

GERB data meeting, 10/2004

Conclusions

- On the average, the GERB and CERES FM3 thermal fluxes agree within the required 1%.
- The anisotropy of the GERB fluxes is underestimated by the radiative transfer implicit ADM's, resulting in regional biases up to 20 W/m².
- The bias seems to be due to semitransparent clouds, but it as a higher amplitude (0.14) than expected.
- An empirical GERB flux correction has been defined, which removes the bias within +/- 5 W/m².
- For further improvement of the instantaneous fluxes, a more detailed IR scene identification is needed.

Coldest scenes

Warmest scenes

125 W/m2 < flux < 175 W/m2

Before correction After correction **GERB-CERES GERB-CERES** 30 30 20 20 10 - 10 -20 Jan - Jun / 2004 Jan-Jun/2004

175 W/m2 < flux < 225 W/m2

Before correction

After correction

Jan-Jun/2004